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FOREWORD

In order that more meaningful data can be obtained in certain

proposed sensitivity tests associated with nuclear weapon vulner-

ability studies, a study of old methods in comparison with new

ones was deemed desirable.

The results presented here wi4ll aid an experimenter in

determining the feasibility of usirg stochastic approximation

techniques. Such techniques havre wide application in industry

and their use is not confined to the evaluation of weapon systems.

Work on this report -was done under the tasks assigned by the

Bureau of Naval Weapons Instruction 5450.17.

The report was reviewed for technical accuracy b7 Charles E.

Antle, Statistics Laboratory, Oklahoma State University, and

Dr. Vanamamalai Seshadri of Southern Methodist University.

EDWARD BAKLINI

Head, Applied Science Group
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ABSTRACT

The rates of convergence of chree stochastic approximation

estimators are studied empizically using a Monte Carlo sampling

procedure. The results are presented in tab, form and various

conclusions are made as to the utility of each "imatov' in the

light of these results.
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INTRODUCTION

Sensitivity testing deals with a continuous variable which

cannot be determined in practice. For example, suppose it is

desirable to know the amount of mass of a high explosive such

that the probability that an explosive response will occur when

the mass is subjected to a jet-fuel fire is less than some spec-

ified level, say a. There are levels of mass at which less than

-00a percent will respond and levels where more than lOOa per-

cent will respond. Clearly, the critical value of mass at which

exactly lOOa percent will respond cannot be measured. All one

can do is select a sample arbitrarily and determine whether the

critical value for a sample is less than or greater than the

mass of each element of the sample.

This situation arises in many fields of research. In selec-

ting insecticides, a critibal dose is associated with each insect

but cannot be measured. -One can only try some dose and observe

whecher or not the preassigned percentage ot insec-s are killed,

i.e., observe whethei or not the desired dose for the insect is

less than the chosen dose. The same difficulty arises in phar-

maceutical research dealing with germicides, anaesthetics, and

other drugs, in testing strengths of materials, and in several

areas of engineering and developmental research.

In true sensitivity experiments, ic is not possible to make

more than one observation on a given specimen. Once a test has

been made, the specimen is altered (e.g., the explosive is de-

stroyed, the insect weakenied) so that a bona fide result cannot
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be obtained from a second test on the sa.- specimen. The common

procedure in experiments of this kind is to divide the sample of

specimens into several groups (usually, but not necessarily, of

the same size) and to test one group at a chosen level, and a sec-

ond group at a second level, etc. The data consist of the numbers

affected and not affected at each level. Several methods of ana-

lyzing such data (variously called sensitivity data, all-or-none

data, or quantal responses) are available (Ref. I and 2).

Most of the methods commonly used are applicable only in

special cases, most of which are based on various assumptions

concerning the distributions of the estimators, especially if

confidence limits are desired. A method, devised relatively

recently (and seldom used for various reasons), is available to

the experimenter in which he may estimate any critical value in

its range with some assurance that after a large number of trials

the estimator will approximate closely the desired critical value.

The method, called a stochastic approximation method, was formu-

lated by Robbins and Monro and published in 1951 in the Annals

of Mathematical Statistics (Ref. 3).

Briefly stated, stochastic approximation is concerned with

the regression of a variable y on a variable x, and seeks the

value x = 9 for which the regression value of y is some preas-

signed number, y = a. The estimation procedure for 0 is sequen-

tial and distribution-free. Despite its extreme simplicity in

application and the wide variety of the situations in which it

may be useful, the technique has not been taken advantage of bv

empirical research workers. One reason for this may be that the

existing literature is addressed primarily to the professional

mathematician. Another reason may be that the mathematical the-

ory itself is not yet complete for relatively small samples.
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A desirable feature of stochastic approximation is the lack

of assumptions required. In many problems, the researcher has

no clear picture of the structure of che relationship he wishes

to study and would prefer, if possible, not to commit himself to

hypothesize the precise shapes of the regression or other distri-

bution features. In such cases, he needs a procedure which is

distribution-free.

Theoretically, the problem reduces to solving the regression

equation

(i) M(x) = a

This problem has been studied by Robbins and Monro (Ref. 3),

Blun, (Ref. 4), Keston (Ref. 5), and others (Ref. 6, 7, and 8).

Using the notation of Robbins and Monro, M(x) denotes the ex-

pected value at level x of the response, say Y, of a enrtain

experiment. M(x) is assumed to be a continuous monotone func-

tion of x, but is unknown to the experimenter, and it is-desired

to find the solution X = Q of the equation M(x) = a where a is

a given constant. The Robbins and Monro method is one in which

successive experiment' are performed at levels X1 , X2 , ... in

such a way that X. will tend to 0 in probability.J

Except for an unpublished study by Teichrow and an applica-

tion of the Robbins and Monro technique described by Louis and

Ruth Guttman (Ref. 9), little is available to the experimenter

to guide him in the use of stochastic approximation methods.

The purpose of this report is to give the experimenter information

I Teichrow, D., "An Empirical Investigation of the Stochastic

Approximation Merhod of kobbins and Monro."

3
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which will aid him in determining the feasibility of using stochas-

tic approximation methods; and also, if he decides to use the

techniques, in determining which of the three available estimators

he should use. The proofs that two of the three estimators con-

verge with probability one to the desired value are available in

statistical literature ancd will not be discussed here.

The report is divided into two parts. The first is a discus-

sion and description of the estimators. The second part is an

empirical comparison of the convergence properties of the three

estimators.

Since the form of M(x) is not known to the experimenter, the

means used here to study the convergence properties is to employ

a Monte Carlo sampling scheme to simulate a test in which stochas-

tic approximation methods will be used. Upon repeated simulations

of trials for various forms of M(x), various convergence proper-

ties of each of the three estimators can be observed.

Th•e primary interest here lies in sensitivity testing, some-

times called quantal response testing; therefore, the empirical

study made is a simulation of this type of testing. A similar

study could be made by assigning a continuous distribution func-

tion to the observed random variable Y(x).

THREE STOCHASTIC APPROXIMATION ESTIMATORS

For each real number x, let Y(x) be a random variable such

that ECY(x)] = M(x) exists. Assume that the regression equation

M(x) = a has a single root at x = 0, which is to be estimated,

and that (x - G)[M(x) - a] > 0 for all x 0 0. An initial value

4
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x and a sequence Ccj] of positive numbers are selected. The

0 + 1)st approximation to Q is defined inductively by the re-

cursive formula

(2) xj+ 1 =x. + c.(a - y)

where yj is the observed value of the random variable at
3x =x.. The letter j denotes the trial number.

Each of the three estimators can be written in -he form of

Eq. 2. However, the difference lies in the way the sequence

[c. J is defined.

The sequence Cc. ] which defines estimator I (the Robbins-

Monro estimator) is a fixed sequence of positive elements with

the foilowing properties:

(a) E c.
j=l J

CO 
2

(b) E c 2 <
j=l i

The sequence [l/j] has these properties.

The second estimator (estimator II proposed by Keston) is

defined by Eq. 1, where the sequence c.c is defined in the3

following way from the sequence

C1 a1

c 2 =a 2

c. a

S t(j)

5
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j
where t(j) = 2 + Z 6[(x. ix )(x x

i=3 i-' i-l i-2)

and 6(x) = 1 if x . 0

=0 if x > 0

Thus every time (x. - x. ) differs in sign from

(x._I xj_2), another ak is taken. A further restriction on

the sequence a kI other than the properties (a) and (b) is

(c) ak+l < ak

It is important to note tniat the elements of [c.I for

j > 2 are random variables.

Keston's rule for selecting the members of [cci is based on.3

the conjecture that in the neighborhood of x = 9, 0 being the

solution of Eq. 1, it seemed likely that frequent fluctuations

in the sign of (x. - 9) - (xj+I - 9) = x. - xJ indicate that

lxj - 9I is small where a few fluctuations in the sign of

x. - xj+I indicate that x. is far away from 0.

It can be shown that there exists a 0', not necessarily

identical with 9, where fluctuations in the sign occur more

frequently in a finite number of trials. The value x = 9' is

defined by the intersection of the line Y(x) = a and the locus

of the medians of the densities dH(y I x)/dy for any x. It

should be noted that if the density dH(y I x)/dy is symmetric,

then Keston's conjecture is obviously correct. Even though the

fluctuation would be expected to occur at 9' instead of 0, tiis

does not affect the convergence in probability of

(3) x j+l x + c(a- yi)

to 0, as Keston has proved.

S~6
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Let x. be the value such that the variation in the algebraic

sign of x. - xj is maximum. Suppose that xjI < x_. In order

for a variation in the sign to occur, xj+1 < xi where xi+I is

defined by Eq, 3.

Let U denote a random variable whose density is the point

bincmial. The variable U takes on the value unity with the

probability P where
x

(4) Px = Pr[Xj1+l < x x xj.I < x i]

From Eq. 3, it follows that

(5) Px = Pr[Y(x ) > a]

Clearly, U has maximum variance at P = 1/2. Therefore,x

that value of x such that

(6) Pr[Y(x.) > a.I = 112

is the desired value of 0'.

If xjI > x., a similar argument leads to the conclusion

that the value of x such that

(7) Pr[Y(x.) < a] = 1/2

is the desired 9'. Hence, 0' is the value of x defined by the

intersection of the line M(x) = a and the locus of the medians

of dH(Y I x)/dy.

Since the sequence Ix.] converges to 9 with probability one,

there exists a J such that for all j > J

Pr[Sup IX. - < -@'I] = 1 - " Q' 9 Q and e > 0x. L

That is, there exists a neighborhood of 9 which does not

contain 0' such that after some trial number N almost surely

7
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all x. will lie inside the neighborhood. Hence, there will.3

exist almost surely only a finite number of sign changes in a

neighborhood of 9' if 9 is not in the neighborhood of 0'. But,

for a finite number of trials, the experimenter cannot be assured

that the sign changes are occurring in the neighborhood of 9

or G'.

In order to obtain an indication of how this fact would

affect the sequence [c.i, consider the difference between the.3

median and means of two rather common skewed densities: the

triangular and the gamma.

Consider first the following form of the triangular distri-

bution:

2x 0 Sx :Sb

f(x) =

2_ (c - x) b. <x <cc ( c-b )-- -

Table 1 presents values of the ratio of the median to c,

the ratio of the mean to. c, and their difference for various

values of b/c. Note that for small values of c, the difference

between the median and the mean can be slight.

Table 2 presents the ratio of the median to p, the ratio of

the mean to p, and their difference for various values of a,

when the gamma density is of the following form:

f(x) x+lIx/ x > 0
S+r(a +)

8
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TABLE 1. Comparison of the Mean and Median for
the Triangular Density Function

b/c Median/c Mean/c Difference/c

5 .500 .500 .000

.6 .548 .533 .015

.7 .592 .567 .025

.8 .632 .600 .032

.9 .671 .633 .038

1.0 .707 4667 .040

TABLE 2. Comparison of Mean and Median for
the Gamma Density Function

a Median/o Mean/P Difference/P

0 .693 1.000 .307

1 1.678 2.000 .322

2 2.674 3.000 .326

3 3.672 4.000 .328

4 4.671 5.000 .329

5 5.670 6.000 .330

6 6.670 7.000 .330

7 7.669 8.000 .331

8 8.669 9.000 .331

9 9.669 10.000 .331

10 10.669 11.000 .331

9
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From the data in Table 2, it appears that even fcr small

values of p, the difference between the median and the mean can

be relatively large.

It should be noted that the mean and the median are identical

in the binomial distribution if, and only if, p = 1, 0, or 1/2

where p + q = 1. The importance of the binomial distribution is

that it is the basic distribution for quantal response problems.

It is hard to justify the use of an estimator computed from

a small number of trials simply because it is known to converge

to the desired value as the number of trials increases without

bound. The fact that no other estimators have been proposed

and found better in some sense could be a just reason for using

the stochastic approximation estimator. Therefore, it seems

desirable to compare the two stochastic approximation estimators

previously described with an estimator (estimator III) which

seems to be the one which would be most naturally proposed by an

experimenter who had no knowledge of the Robbins-Monro or the

Keston estimators.

An experimenter who wishes to determine an x such that

M(x) = a would most logically select an xI which he would con-

sider as being close to the desired value and then compare the

random variable Y(xl) with a.

If Y(xl) exceeded a, then x 2 < x, would be selected accord-

ing tu Lhe magnitude of a - Y(xl). Similarly, if Y(xl) was less

than a, x 2 > xI would be selected. Clearly,if Y(x) = a, the

experimenter would continue testing at xI. If after j tests

Y(X.l) < a and Y(x ) > a or Y(x. l > a and Y(x.) < a, then it

10
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seems logical that the experimenter would interpolate in order

to obtain xI. Also, it seems a desirable procedure to shorten

the steps that one takes after each trial in a small neighborhood

of the desired value of x. A modification of Keston's procedure

for shortening the step length seems intuitively adequate.

MathemAtically, thi.s procedure can be described by the

recursive formula, Eq. 1, where c. is an element of a sequence

Lc.] defined by the following rule:

c1 = a1

c 2  a 2

If cI 1 = ak for k > 2, then

a k when a t (yj, Yj_l)

wj =y(x. - xj 1l)/(yj - yj~l) when a G (y, yj_l)

ak when cj = ak and a (y.j+I'Y)

c (x j4l - xM)/(yj+ 1 - y ) when a e (y j+I yj)

al ak+l when a• (Yj+I Y)

\(and c I = (%x - d/(yj - yjil)

When ak is an element of a sequence [a. having the following

properties:

(a) ak > 0 for k = 1, 2,

(b) ak > ak+l for k = , 2,

(c) a

• I ak

(d) =2
a11

-- • Ii
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That is, if a z (Yj. y, . .) then xj+ is obtained by linear

interpolation. A n~w ak is selezted after each period of linear

interpolation. An end of i period occurs if a e (yj, y ), but

a ij yj.); hence, c. 3i, the next unused element of the- ].1

sequence [ak-

APPLICATION OF STOCHASTIC APPROXIMATION METHODS

TO QUANYTAL RESPONSE PFOBLE14-

Let the random variable Y take on o!.ly _wo values, unity

with the probability M(x) and zero with the probability I - M(x).

This type of a response has been called quantal response. Let

there be two real numbers, a and b (a < b), such that

Y(x) - 0 for all x_5 a

and Y(x) - i for all x> b

Assome that a = 0 and b - 1. Then the regression function

M(x) will have the following properties:

M(x) - 0 for x< 0

Sf(x) for O< x< I

= 1 , for x >Z

In a neighborhood of x = 9, the root of the regression equation

M(x) = a, we know that there exists a small neighborhood of a

in which

(8) Pr[Ixj+1 - 01 zx - 91 and (xjJ+ - Q)(xj - 9) 0]

the probability of making an incorrect decision at x. is a.i

increasing function of x as x tends toward 0.

12
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Since Y(x.) can take on only the values of zero and unity,

and assuming a # 1 or a # 0, then Pr[Y(x.) = a xI x ] 0,
or the value of the probability statement 8 is unity.

Suppose, how'ever, that at each level x. a sample of k > 1

Y's are taken. Since the sample mean

k 0O if no response occurs

k = i (X 11 whereYi = if a response occurs

has the same expected value as the random variable Y(x), the

recursive formula x 1+1 = xj + c [a - Y(x)] will converge with

probability one to the same limit as x = x + C - yLxj)]

for estimators I and II.

Let us consider a special application of the general stochas-

tic approximation technique, that is, the problem to which stochas-
tic approximations would be most applicable: the quantal response

problem or sensitivity testing. This is a test in which the

experimenter wants to determine a level of x such that the

probability of a response as defined by the problem will be

some preassigned value, say a. Let M(x) be defined by Eq. 1

where f(x) is monotonically increasing in its range. Let us now

consider the upper and lower tolerance equations, L1 and L2'

respectively, such that 1 - 2y percent of the observed Y(x) will

be expected to fall between them. Let us represent these by

2 A good example would be to determine that dosage of radia-

tion to which a specified laboratory animal can be subjected such

that the probability of his death after subjection to the dosage

would be less than 10 percent.

13
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L = f(x) + m f(x) f2x
k

and T = f(x) - f_()- x
2 k

Differentiating

dLl = f'(x)[l + - f(x)

dx •

when k, the sample size, and m are selected so that

Pr[f(x) - ma- < Y(x) < f(x) + moa] = I - 2Y
y y

and !h is sufficiently large so that m/k 1 1. Similarly,

dL2  f' (x)2l - +

Axk

That is, both tolerance equations are monotone and increas-

ing with x as long as va/k i I.

In order to gain further insight, consider Fig. I A desir-

able quality of a Lest would be conditions such that the length

of the interval I(0) = [x(Ll0, x(L 2 )] be minimized. The length

of l(G) depends upon slope and curvature of ffx) in the neighbor-

hood of 0 and the distribution function of Y, say GI j x).

Since kY is distributed as

(k M(x)k[l - M(x)i]k-ky

increasing the sample size k decreases the variance

Var(Y i x = M(x)[l - M(x)J
k

14
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We note that lim !(G) = 0 and that tbe density g(y I x)k-w

becomes symmetric as k increases. Hence, for large samples,

we are assured that as the trials proceed we will move toward

0 with a probability of at least 1 - Y at each trial when

x ý I(0). It is only in those trials at levels of x which are

contained in 1(@) that the probability the next step will be

toward 0 is less than 1 - Y.

Figure 1 illustrates that each sample size fixes the tolerance

equations L1 (x) and L2 (x). Note that the probability of moving

toward 0 at each x. exceeds or is equal to 1 - y if x ý 1(@).3
Since cost and sample size are usually directly related, it

would be desirable to minimize k, the sample size. If Ix. - 61

is relatively large, a small sample size seems to be desirable.

When Ix. - 01 is relatively small, a larger sample size requires

the length of 1(@) to decrease and the likelihood that x A I(0) to

increase.

The effect of increasing sample size w:ith number of trials

has been studied empirically. (See Tables 4-8, pp. 22-26.)

THE MONTE CARLO SAMPLING PlAN TO STUDY THE RATES

OF CONVERGENCE OF THE ESTIMATORS

Due to the number of uncontrollable parameters involved,

perhaps the most practical means available at tl is time to study

convergence properties of the three estimators is a Monte Carlo

--procedure. The procedure used is as follows:

15
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PROBABILITY L fx2 -O F -- - ---
A RESPONSE " .

a
0 17

ZjII1LL1
I I

14 1

PROBABILITY

OF - 4  J fjG71)
MAKING AN IL
INCORRECT -I -- I I
DECISION -4 tf d-~fG(y 10)

IN DIRECTION
S--]-X " ---- Pt• J G~l)

0 
T

x(L1 ) 0 x (L2)
x

FIG. 1. The Regression Function and the Associated Curve
Illustrating the Probability of Making an Incortrezt Deci-
sion in Direction.
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1. Define M(x), a, Ak, and k, where k is the size of the

sample taken at each level of x, and Ak is an increment which

will be added to k with increasing trials.

2. Letting xI = a, compute M(x1 ).

3. Generate k random numbers (ri, i = 1, 2 ... k) from

a uniform density.

4. Compare each random number ri with M(xl). If r, > M(Xl),

assign the value of zero to Y.. If -r4. M(xl), assign the value

of unity to Y..1 k

5. Compute 71 k Yi

6. Substitute 7, into the recursive formula to determine x2 .

7. If (x. - X.- 1 )(xjI - xj_2 ) < 0, an increment of Ak is

added to the sample size.

This procedure was programmed for the IBM 704 and continued

for a desired number of trials. -By repeating the process several

times, various conclusions can be made-

In the study, each test was composed of a simulation of

forty-nine trials. Each test was repeated one hundred times.

Average values for x7 , x1 4 , x2 1, x2 8 , x35, x4 2, and x4 9 were

tabulated (Tables 4-8) for various values of a, k, and hk.

In practice, the form of M(x) is unknown to the experimenter,

but it was necessary to define the form of M(x) to perform the

sampling plan. Five forms bf M(x) were selected in order for

a relatively complete grid to be placed over the unit square

(Fig. 2).

17
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10

08

07 4 -

!Ml

06

4- 1
PROBABILITY 2  -4

M2

04 M

03

011

01

0 01 02 0.3 04 0.5 06 07 08 09 1 0

FIG. 2. The Five Forms of 14(x).
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4- These were

Ml(X) = 0/4 x <

'r 4x2 0 s x 4 1/4

M2 (x) I - 4(1 x) /3 1/4 2 x 1

2x 0 .<, xs 1/2
M 3(x) i I- 2(1.- x)2 1/2 2 x5 x 1

4x /3 0 <x _< 3/4

M4%x 1 1 - 4(1 - x)2 31A < x

M 5 (x) =x O0Lx .

The form of dH(y I x)/dy is defined by the quantal response

property as the point binomial.

The values of a considered here with their associated 9i for

i = 1, 2, 3, 4, 5, where 0. is the x value of the intersection

of M.(x) = a and Mi(x), are tabulated in Table 3.

TABLE 3. Data for Sampling Procedure

a T 1 2 j4 @5

.05 .00006 .11180 .15811 .19365 .47287

.10 .00010 .15811 .22361 .27386 .56234

.30 .00810 .27543 .38730 .47434 .74008

.50 .06250 .38763 .50000 .61237 .84090

19
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0.40Ak0

0.38

AVERAGE

VALUE OF 03 ~ ~ C012'"
Xj FOR
400

INDEPENDENT
TESTS 0.34-

0.32 -

C) " -,. .• .. . ,-

---,C 0.375"

0.30 . .... .... ... ... .

0 7 21 35 49

TRIAL NUMBER (j)

FIG. 3. The Effect of the Selection of [c/j] on the

Rate of Convergence.

1.4oo00 . n"-1-- k F

EMS x 102 1.000o•
FOR 400 75-r

INDEPENDENT
TE S T S 1 .- !v ft. -- _0 .2 5 0 .: - 1 1I: • ..

0.600J

:C =0.1254' :I• 'l,.• --

0.200 "• :... ..... .. ... " ". .0 7 21 35 49

TRiAL NUMBER (j)

FIG. 4. The Variation of the Estimator for Various Values of c.
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Various sample sizes, ranging from one to twenty, were used

in simulating the test. Also,a scheme in which the sample size

increases by an increment of five as the number of trials in-

creased was considered. When (xj - X -l)(xjI - xJ- 2 ) < 0, the

sample size was increased.

The sequence [c.] for the empirical study was [c/f] where

c = 0.250 and j the trial number. The choice of 0.250 is

arbitrary and is not optimum for all forms of M(x).

The selection of c = 0.250 was based on the data summarized

in Fig. 3 and 4. Three choices of c(c = 0.125, 0.250, 0.375)

were studied empirically using estimator I. From Fig. 3, a
"good" value of c in terms of minimum error in accuracy, in

a sequence of fonm [c/jl, would be in the range of from 0.250

to 0.375. Figure 4 shows that the greater variability of the

estimator for a small sample size for c = 0.375 may offset its

valuc as an estimator even though it is associated with the

minimum bias of the three cases studied here.

The results of the Monte Carlo simulation are tabulated

in Tables 4-8.
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CONCLUSIONS

The most significant result of the empirical study is per-

haps thie apparent slowness with which estimator I converges to

9 es-Žeciaily when Ix. - @I is relatively large. For a test

which ,rvolves less than fifty trials, estimator I when compared

with i! ard lII appears the least desirable in terms of accuracy.

Figures 5 and 6 illustrate and emphasize the slowness of its

convergence. A good rule is that unless the experimenter is

certain that the initial value, x,, is close to 9, he should

avoid us in2 estimator I (the Robbins-Monro stochastic approxima-

tion method).

On comparing estimators II and III, it is apparent that

there are cases in which II appears better in terms of average

accuracy than Il1, and vice versa. When a = 0.50, the data

from Table 7 indicate that III is slightly better for all sample

sizes. Also, it should be noted that increasing the sample size

had little effect in increasing the rate of convergence for all

the estimators, I, 1I, and III. This is not true for other

values of a. However, sit' sample size 10, estimator IIl gives

a close approximation suc.-i that Ix -1 < 0.006 for all
49

9 . for i = 1, 2, 3, 4, 5 if accuracy of the estimator is of

first importance when estimating 0 for a = 0.50, the experimenter

can be assured that estimator III will on the average give

results with very good accuracy.
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On comparing estimators II and III for values of a other

than a = 0.50, it is clear that II is better for sample size

one, but III becomes better with increasing sample size. The

data indicate that, for small sample sizes (1 and 5) and

a = 0.05, I11 overestimates (see Fig. 3). In ordev to explain

this, consider the following rationale.

Recalling that for sample size one

y. - 0 if no response occurs
3 1 if a response occurs

then if a e (yj, y.J-), a linear interpolation restricts

such that x. < x1 +I < xj_ or xj_ < x.+ < x.. Suppose that

a = 0.05, then one would expect in the neighborhood of 0 that

only one out of twenty trials would result in a response. Hence,

there would occur on the average twenty steps to the right for

one to the left. But when the one does occur, x3+ 1 £ (X1 1 , 1,)

or xj+1 C (xi, xj 1l), which offsets the large step back to the

right which occurs in using I and II. Hence, one can expect

estimator III to overestimate toward the left in the limit for

a < 0.50 and sample size one. It is assumed that a is always

less than or equal to 0.50. But when m = 0.50, the linear

interpolation is meaningful and apparently there is little or

no bias (see Table 7).

As the sample size increases, the error in accuracy for esti-

mator III becomes smaller, indicating that either the symmetry

of the density dH(y I x)/dy or the decrease in the size of the

variance of Y affects the convergence properties of III to 9.
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Consider the function Pk(x), which defines the probability

that the direction of the next step from x will not be in the

direction of 0 (see lower part of Fig. 1).

That is X) = (x) x

Pk(X)=ji2 ~

where

0 < s (X) S max [f dG(y- I x),f dG(-y I x

which in the limit as k increases without bound becomes

Pk(X) = 0. This is sufficient for the estimator xj+1 = xj +
c (a - Tj) to converge in the limit to 0 as k tends to o,

and j tends to =.

The results support the following rules: For small sample

sizes and a large number of trials, avoid using estimator III.

For sample sizes larger than five and a small number of trials,

estimator III gives greater accurazy.

The direct relationship between small error in accuracy and

large sample sizes poses a problem of efficiency of estimators,

that is, the resolving of the problem of whether larger samples

with a small number of trials is more desirable than unit sample

sizes with a large number of trials. The solution depends on

the nature of the test and must be solved for the specific test,

hence, will not be considered here.

Increasing the sample size sequentially by increments of

five (see Table 8) does not, in the cases studied, increase

significantly the accuracy of the estimators, especially when
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the comparisons are based on sample sizes larger than one. This

method can be used when sample sizes are not restrictive and

relatively good accuracy is important. However, it was observed

that sample sizes will in some cases exceed one hundred experi-

mental units at the forty-ninth trial. The accuracy of estimator

Ill is increased perhaps the most from such a scheme. It is

important to note that increasing the sample size has little or

no effect on the rate of convergence of estimators I and II.

The main results of this study are that estimator I,

although of historical and theoretical importance, appears

impractical for purposes of application, and the choice of using

II or III depends upon the coudiLioub surrounding the tests and

must be determined for each test.
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Appendix

PROPERTIES OF THE SEQUENCE [c. J ASSOCIATED WITH ESTIMATOR III3

Let H(y 1 x) be a fdmily of distribution functions depending

on the real parameter x, and let

(9) M(x) =f ydH(y I x)

be the corresponding regression function. It is assumed that

M(x) is unknown to the experimenter, who is, however, allowed to

take observations on H(y x) for any value of x.

The recursive formula

(10) xj+ 1 = x. + c.(a - yj
defines a sequence Cx. ] which in the limit would be desirable3

to converge with probability one to @, which is a root of the

equation

(11) M(x) = a

The value c. !Q an element of a sequence defined by the3

following rule:
(12) C a 1

c 2 = a 2

If cJ-1 =ak for k > 2,. then

c j (ak when a 0 (yj, yjyl)

= (xj+1 - xj)/(yj+1 - yj) when a e (yj, yj. 1 )
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l ak when c. = ak and a • Y Y)

(x j+I - xj/Myj+I - yj) whien a e (Yj+I, Yj)
Ca ~ when a 0 (yj+lý yj) and

cj = (x. - x _l)/(yj - yi-l)

When ak is an element of a sequence, [a k, having the following

properties:

(a) ak > 0 for k = !, 2, 3,

(b) ak > a k+ for k = 1, 2, 3,

k 3
(c) Za.=

(d) • a. < c
I .1

it is assumed that M(x) is a continuous function and

H(y I x) is such that

Pr[Y > a I x < 9] < Pr[Y > a I x = 0]

and Pr[Y > a I x > 0] > Pr[Y > a I x = 0]

These conditions and the restrictions listed below are the only

restrictions placed on M(x) and H(y I x).

(a) IM(x)l :- c + Idix c and d are
re .1 constants

(b) f-_• ly _ M(x) mdH(y I x) < G2 <

(c) M(x) <" for xc 0, M(x) > a for x > 0
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(d) inf IM(x) - al > 06 1 S<I X-0 1_5 6 2

for every pair of numbers

(61, 62) with 0 < 61 < 62) <

The properties of the sequence [c ] will be presented in

the form of seven lemmas and a single theorem.

Lemma 1

If the elements ck and ckl of the sequence [c.] are such

that ck1 k [a-i and ck = (xk - xk l)/(yk - Yk-1' then

0 < ck < Ck-_I

Proof. Since ckl e [a Ck-1 > 0. If Yk < c < Yk-l'

then xk < Xkl. Similarly, if Ykl < a < Yk' then Xk < xk.

i- follows immediately that ck (N - Xk-l)/(yk - Yk-l) > 0.

It remains to be proved that ck < Ckl. Since xk = Xkl +

ckl(a - Yk_l), we can write ck = Ck-l(a - Ykl)/(yk - ykl).

Noting habt -- n aL < < and kl < < yk imply that

0 < (a - Yk_l)/(yk - Yk_l) < 1, it can be concluded that

ck < ckI.- It should be noted that if xk k_, then Yk-I < Yk

cannot be true. This follows immediately from the recursive

formula, Eq. 10.

Lemma 2

For every k such that ck = (xk - xkl)/(yk - yk_,) and

Ck+l = (xk+l " Xk)/(Yk+l - Yk)' ck+l < ck-

Proof. From the proof of Len-.a 1, we know that ck+I

c k(a - yk)/(Yk+l - yk), since ck > 0 and 0 < (a yk)/

(yk+l Y < 1, it follows that Ck+l < ck-
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It should be noted that in general c i+l is not less than c.

for all j = 1, 2,

Lemma 3

For each k and J the probability that c. = ak for all j

_ J is zero.

Proof. Let c. = ak for all j _: J, where j =1, 2,....

The sequence xi I is monotone which converges to a finite value,

say A, if the sequence is bounded, and diverges to either -

or + - if unbounded.

Let [x. I be non-increasing and bounded below by its limit A.

Then for each j > J there exists an e. > 0 such that x. A +

ejak. The sequence [e.j is a non-increasing sequence of positive

elements such that lim e. = 0.

Clearly then,
(13) 0 S< O .l -A < e ak

Simplifying,

0•5x. - A + ak(a - y.) .• e.a,

0. - ejak + ak(- yj) _< ejak

0 <S e. i + (a &- y.) e e

a .S y. . a + e.i

Let us now consider the probability of such an event, that is,

Pr[a .< Yj .5 a + e.1. If H(y I x) is continuous, then,as

j - -and e. - 0, Prla £ Y. < a + e.] - 0. However, if H(v I x)

is discrete, Pr[a 5 Yj -:5a + e.] may not necessarily converge to
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zero as e. - 0. But [a 5 Y. < a + e.] must hold for all j

greater than that one for which the inequality 13 holds. Clearly,

as e. tends to zero, the probability of such an event is.3

Ii PrLY = a]5_< max (Pr[Y = a 0
1 1 A 5_x5 xi I

A similar argument holds when the sequence Ex. ] is non-decreasing

and bounded.

Suppose the sequence [x.] is unbounded, then either Jim x -
.3 - i

or limx. =x . In order for these events to occur, y. < a or

Yj > a for all j > J, respectively. Let us investigate the prob-

ability of such events, that is, Pr[Y. > a, Y > a, .. .1SPl.j+l
Prrlim x. = --] and Pr[Y4 < a, , . = Prlim x.=

Consider the latter of the two cases.

Pr[Y. < a, Yj+I < a, ... ]=Pr[Yj < a] Pr[Y j+I a I Y. ;a]

Pr[Yj+L < a I Y < a, ... ,Yj+L_1 < a]

=I Pr[Yj+L < a]

L

There exists only a finite number of L such that x < 9. It

follows then that

Pr[Y. <a , Y.+I < a, ... j Pr[Y. < a ix. > ]
I3 3 1

5 1 Pr[Y < a ix =0

=0

A similar argument holds when lim x. =, and the lemma is

proved.

Lemma 4
If - yj - Yj_l) for all j > J, then lim

33(x. - x. ) 1 0 almost surely is true for all c.

.3 .31 .337
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Proof. Suppose x2 j x and a < y... In order that cj

have the form restricted by the hypothesis of the lemma,

Y2j-1 I a I y2j for all j a J. The sequences Ex2 j.1 and Ex2 j ]

are monotone; the first is increasing, the second is decreasing.

Since x. +1 is obtained by a linear interpolation between x.j nd

xj_l, both sequences are bounded abovu and below. Let
lim = A and lim% = B. Let B - A = A, where A > O. Then
j. O2j-1 I -M 2j

for every j > J, there exists an e2j.- > 0 such that x2jl

A - e2j-l. The sequence [e2j- is monotonically decreasing and

converges to zero. With each j there exists an e such that

x2j = B + e 2j. The sequence [e 2 j I is monotonically decreasing

and converges to z-ro as j increases without bound. Consider

(14) x2j+l = X2j + [(x2j - x 2jl)/(y 2j - Y2 jl 1)](a - y 2 j )

= B + e 2j + (B + e2j - A + e 2 j- 1 )

[( - y2j)/(y2j - Y2j-1)]

= B +A(a - y2j)/(y2j - y2j.l)] + e2j

+ (e2j + e2j.l)E(c - y2j)/(y2j - Y2j-l)]

Taking the limit of both sides,

Jim x B - A[Lim (y2j - a)/I(Y2j -y )]

j_ -- 2j +1 1

it is clear that

Pr~lim (Y2  - a)/(Y Y2j-) = D] = 0 for any D
j-. 2j2j -

Since the left side of Eq. 14 converges and [Jim (Y21 - a)/

(Y 2. - Y2j-1)] almost surely does not exist, A = 0, that is A = B.

It follows immediately, then, that for almost all c. -im X.)

= 0, the desired result.
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Lemma 5

Let thi sequence [z I be the union of all subsequences of
kS[Zk] such that km zk = , where Z. is the number of times that

the kth element of [a k appears in the sequence [c. Then,

Pr[lim z = = 0.
k-. k

Proof. From Lemma 3, we know that for each k, Zk is almost

always finite. Since the sum of a denumerable number of sets

of measure zero is also of measure zero, we can conclude that
the probability of at least one element of the sequence of

infinite terms in [Zk] being infinite is also zero. This still
does not assure us that the sequence [ZkI is almost always

bounded.

Let lim zk = c Then for each L >0, there must exist ak-•

k such that zk > L. Consider the probability of such an

event, that is,
Pr[zk > LI = Prig > a, Y L > al

or Pr[zk > LI =PrLrY1 < a, <YL < al

But, from the proof of Lemma 3, we know

lim Pr[YI > a, ..., YL > al -- 0
L- 1

or lim PrYI <aý ..." YL < al = 0

Hence, we can cnnclude

Pr[limz =z = 0
L k

That is, the sequence [zkI is almost surely a bounded sequence.
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Lemma 6

For every J, the probability that cj = (xj - x. l)/(yj - y.1l)

for all j _> J is zero.

Proof. Suppose each element of the sequence [c. ] takes on

the form defined by the hypothesis of the lemma. Then the

sequences [x 2N and [x J are monotonically decreasing and

increasing sequences, respectively, when y2j- 1 < a y2j for

all j > J. Similarly, the sequences are monotonically increasing

and decreasing, respectively, if y2j < a < y2j-I for all j Ž J.

By Lemma 4, we know that both these sequences converge to a

common limit, A. Consider a neighborhood of A, say v(A), such

that at least one of the following probabilities is less than

unity for all x e v(A): Pr[Y., > a I x e v(A)] and

Pr[x 2j-1< a ! x e j(A)], The existence of v(A) is assured by

the continuity of M(x). Suppose that at least one of the proba-

bilities above is identically equal to unity, or at least in the

limit equal to unity as j - - and x - A. It is assumed that the

variance of the random variable Y is finite for all values of

x and that M(x) is continuous., Then if

lim Pr[Y > a I x c v(A)] = I
x-A j 2 j

this must imply

lim Pr[Y2 j~l a I x2il e v(A)] = 0

and vice versa.

Let there be a J such that cj = (x. - xj. )/(yj - y.-I)

for all j > J. Consider the probability of such an event, that is,
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Pr[Y a, ... ' Y <a, ... ] PrY > a, ... , Y > , ...
1 24-1 2 2j**

_< lim( max Pr[Y2  "I .1 ])3 lim( max Pr[Y2. > %])J

3' x.Ev x.ev

This is true since in v(A) either max Pr[Y2j-1 < a] or

max PrCY2 j > a] must b'e less than unity. Therefore, at least

one of the limits will De identically zero.

Lemma 7

Let the sequence rz k be the union of all subsequences of

Zk I such that lim z1, = where Zk is the number of elements of

the sequence [c.] having the form (x. - X._)/(y.- Yl) which

lie between any two successive members of the sequence [aj3.

Then Pr[lim z = '] = 0.

Proof. Let lim z. = , then for each 2L > 0 there exists

a j such that zi > 2L. Let us now consider the probability

of such an event, that is, Pr[Y, < CV, V9 > a, "..Y2k-1 < a.

Y2k >a, .. ,Y2L-I < a, f2L > a]. But, from the proof of

Lemma 3, we know thaL lim Pr[Y < a .... , I Pr[Y > a,
L- 1  2L- 1  

2

Y 2= 0. It follows then that Pr[lim z. = =] - 0.
2L-j

Theorem .

Any given sequence [c.] is almost surely a member of the

class of sequences [bj] where [b ] is defined by the following

properties:

(a) b. > 0 for all j

(b) E b.
1 .3

(c) b2 <C
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Proof. Consider any sequence [c.] as defined in rule 12.3

By Lemma 1, each element of the sequence is necessarily positive.

Condition (a) is satisfied.

Lemma 3. Lemnma 6, and Lemma 7 assure us that every element

of the sequence [a.] is almost surely contained in [cc . There-
33

fore,since c. > 0 for all j,3

Z c. a., but Z a = then Z c. 0

1J 13 !J ' 13

Hence, condition (b) is satisfied.

In order to show that the sequence [ccJ satisfies condition

(c), consider the following infinite sum:

2 2 2  2  2 2 +Ic.j = aI + a2 + .. + a2 + cl + C1 + ... + clM + am

13 1 2 2 11 12 lM1 3

2 + 2+ 2
+... + a3 + c 2 1  ..

Where aI occurs once, a2 occurs k2 times, a3 occurs k3 times,

etc. By Lemma 5, the sequence rk.j is almost sirely bounded.3

By Lemma 7, the sequence 'M N is almost surely bounded. Let

k = max k. and M. =max M.
j j 3 j 3

If the sum Z. is convergent, it is absolutely convergent.
1 3

The rearrangement of terms will not affect the convergence or

the sum. Hence,

0 2 02 02 2+~~
E c. < k E a + M Z a = (k +M) a2 <

which is the desired result, condition (c).

What is unusual about the theorem is that the conditions

2"(a) c. > 0
3
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(b) c <

(c) c.
1 3

are identical to those required by Blum (Ref. 4) in his theorem

which proves that the limit point of the sequence ix. j is a with3

probability one for estimator I. The theorem can be stated as

follows: Let M(x) be the regression function correspoading to

the family H(y I x). Assume thar M(x) is a Lebesque-measurable

function satisfying

(a) !M(x) 1 ;5 c + d Ixl

(b) y,•[y _ M(x) 12 dH (y I x) -- c2. <

(c) M(x) < a for x < 0, M(x) > a for x > 9

(d) inf I Y,(x) - a 1 > 0

1 :SXG<6

for every pair of numbers

(61, 62) with 0 < 61 < 6 <

Let [b.j be a sequence of positive numbers such that
3

(e) b,==1I 3

=2(f) Eb <

Let x be an arbitrary number. Define a sequence of random

variables recursively hv

(g) x.+I x. + b. (a - yj)

where Y. is a random variable distributed according to H(y I x).

Then x converges to 9 with probability one.
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